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ABSTRACT

A CFD sensitivity analysis is conducted for an aircraft at several conditions� including �ow
with substantial separation �bu�et onset	� The sensitivity is studied using two di�erent Navier

Stokes computer codes� three di�erent turbulence models� and two di�erent grid treatments of
the wing trailing edge� This e�ort is a follow
on to an earlier study of CFD variation over a
di�erent aircraft in bu�et onset conditions� Similar to the earlier study� the turbulence model
is found to have the largest e�ect� with a variation of ���� in lift at the bu�et onset angle of
attack� Drag and moment variation are ��
� and ������ respectively� The variations due to
code and trailing edge cap grid are smaller than that due to turbulence model� Overall� the
combined approximate error band in CFD due to code� turbulence model� and trailing edge
treatment at the bu�et onset angle of attack are� �� in lift� �� in drag� and ��� in moment�
The CFD results show similar trends to �ight test data� but also exhibit a lift curve break not
seen in the data�
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� INTRODUCTION

CFD codes are now run routinely for complex aerodynamic con�gurations� both for the purpose
of aircraft design as well as to assess and improve the capability of CFD to predict certain classes
of �ows� While many engineers have begun to trust CFD results for mostly attached �ows �such
as aircraft at cruise conditions	� the same cannot be said for separated or unsteady �ows� Some
of the fault for this may be that current turbulence models or any Reynolds
averaged Navier

Stokes �RANS	 models are unable to handle some of the complex� inherently
unsteady physics
involved� But it is also more di�cult to obtain reliable experimental data at these conditions�
so some of the fault may be attributed to di�culty in using CFD to model precisely the same
problem as experiment�

Recently� Rumsey et al���� examined the CFD sensitivity for a civil transport near bu�et
onset� Grid� code� spatial di�erencing method� aeroelastic shape� and turbulence model were
varied� In summary� given a grid of su�cient density for a given aeroelastic wing shape� the
combined approximate error band in CFD at conditions near bu�et onset due to code� spatial
di�erencing method� and turbulence model were� �� in lift� �� in drag� and ��� in moment�
The biggest two contributors to this uncertainty were turbulence model and code�

Using the knowledge gleaned from the earlier study� another aircraft con�guration was
investigated� This paper details some of our experiences computing this new �ow in �ight
conditions near bu�et onset� This time� due to the fact that they were the largest in�uences
before� turbulence model and computer code were still varied� Additionally� because of this
aircraft�s blunt wing trailing edge� the e�ect of changing the modeling of the trailing edge shape
in the CFD grid was also explored� In the current study� comparisons were made with �ight test
data only� It is not believed to be appropriate to compare the current CFD results with wind
tunnel data� because the CFD cases used the �ight geometry �not the wind tunnel geometry�
which employed a di�erent fuselage shape	�

The complete grid system in the current study was designed using many of the �lessons
learned� in the previous study� Based on the grid sensitivity study from Ref� ���� the current
grid is believed to be �ne enough to adequately capture the forces and moments to within a
signi�cantly lower error than the errors due to code or turbulence model�

In the following section� the methodology is presented� including a brief description of the
CFD codes� the grid system� and a summary of the computations performed� Following the
methodology� results and concluding remarks are given�
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� METHODOLOGY

��� Description of CFD Codes

Two di�erent CFD codes were employed in this study� CFL�D ��� and OVERFLOW ���� Both
codes were developed at NASA� Both are multi
zone codes in wide use in U�S� industry� Both
can use overset grids� and both employ local time step scaling� grid sequencing� and multigrid to
accelerate convergence to steady state� Time
accurate modes are also available for both codes�
and both can employ low
Mach number preconditioning for accuracy in computing low
speed
steady
state �ows�

CFL�D is a �nite volume method� It uses third
order upwind
biased spatial di�erencing
on the convective and pressure terms� and second
order di�erencing on the viscous terms� it is
globally second
order spatially accurate� The �ux di�erence
splitting �FDS	 method of Roe is
employed to obtain �uxes at the cell faces� It is advanced in time with an implicit three
factor
approximate factorization method�

OVERFLOW is a �nite di�erence method� It can use either second
order central di�erencing
or third
order FDS� Left
hand side options include a diagonalized �scalar pentadiagonal	 scheme
and an LU
SGS scheme� First
order implicit time advancement is used� For this study� both
CFL�D and OVERFLOW employed the PEGSUS ��� software to obtain overset interpolants
for the regions of overlapping grid�

Three turbulence models were used for the current study� These were� Spalart
Allmaras
�SA	 ���� Menter�s shear stress transport �SST	 k
� ���� and an explicit algebraic stress model
�EASM	 in k
� form ���� It should be noted that OVERFLOW employs an unpublished variation
of the SA model �see Ref� ���	� However� at high Reynolds numbers like that used in the current
study� the e�ect is almost negligible�

��� Description of Grid

The baseline overset grid system for this con�guration was composed of �� zones� with a total of
over ���� million grid points� The grid used the �ight geometry �as opposed to the wind tunnel
model geometry	� and used di�erent �ight aeroelastic wing shapes for each of three di�erent
angles of attack�

The general rules from Ref� ��� for grid point spacings� grid stretching� trailing
edge closure�
and wake
cut placement were followed for the current grid� However� because the current
con�guration had �ap hinge fairings and a winglet� the resulting total number of grid points was
considerably greater than the baseline grid from the earlier reference� The minimum spacings
at solid surfaces was such that the average minimum y� level was approximately ���� The far
�eld grid extent was at least �� mean aerodynamic chords� Two views showing the surface grid
are given in Figs� � and �� Fig� � shows an overall view of the fuselage� wing� winglet� pylon� and
nacelle� Fig� � shows some details on the lower surface of the wing� including the grid spacing
on the wing itself and the C
grid topology around the three �ap hinge fairings� Fig� � renders
the grid as a smooth surface to show a clearer view of the geometry of the �ap hinge fairings
as well as the nacelle�

A few runs were also performed for which the wing trailing edge geometry was modeled
realistically �using a cap grid	� rather than simply closing o� the trailing edge with one grid
point �as was done for the baseline grid	� This latter method� described more fully in Ref� ����
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Figure �� Overall view of aircraft con�guration�

Figure �� View of grid over lower surface of wing� including �ap hinge fairings�
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Figure �� Smooth surface view of lower surface of wing� including �ap hinge fairings and nacelle�

has been found to yield reasonable force and moment predictions for many con�gurations�
However� the current con�guration possesses a very blunt trailing edge� which may have more
of an in�uence on the results if it is not faithfully modeled�

Views of the trailing edge for the baseline as well as the capped trailing edge are shown
in Figs� �� �� �� and �� For the capped grid� the blunt base of the trailing edge at each
spanwise station was modeled with �� grid points� From Figs� � and �� it should be noted
that� although the cap grid models the blunt trailing edge shape� it also possesses signi�cantly
larger wake spreading than the baseline grid� This spreading may introduce excessive numerical
dissipation in the near wake region� and also may introduce large overset interpolation errors
at the interface between the two grid zones because of the large di�erence in grid spacings� On
the other hand� sometimes faithfully modeling the blunt trailing edge and including �ne wake
resolution results in an unsteady solution �because of alternating shed vortices	� While this
situation is more physically realistic� it is also extremely costly because the CFD codes must
be run time
accurately� We did not pursue this avenue of exploration for the current study�

��� Summary of Computations Performed

A summary of the computations performed for the current study is given in Table �� Half the
runs were made using OVERFLOW and half with CFL�D� OVERFLOW only used the SA
turbulence model� whereas CFL�D employed the SA model as well as SST and EASM� The
e�ect of the trailing edge capped grid was tested using OVERFLOW� The aeroelastic shape
appropriate to each angle of attack was employed for � � ��
�� ����� and ����� However� at
angles of attack higher than � � ����� new aeroelastically
correct grids were not created� In
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the previous study �Ref� ���	� at angles of attack beyond bu�et onset the aeroelastic shape did
not change as much as it did at lower angles of attack� because wing loading did not increase
as much with �� The same trend was found to hold in the present case� Therefore� use of the
grid created for � � ���� is believed to be a reasonable approximation at the higher angles�

All cases were run at a Mach number of ���� and a Reynolds number of �� million �based on
mean aerodynamic chord	� All runs were performed fully turbulent� Due to time and budget
constraints� a grid sensitivity study was not performed for this con�guration� Performing such
a study would have required creating both �ner and coarser grid systems� It is believed that
taking every other grid point from the existing grid size of ���� million points would yield a
grid too coarse to provide meaningful results �i�e�� it lies outside of the asymptotic range in
which grid re�nement or coarsening yields results that follow the spatial order property of the
numerical scheme	� Based on the grid sensitivity study performed in Ref� ���� the current grid
size is believed to be �ne enough to adequately capture the forces and moments to within a
signi�cantly lower error than the errors due to code or turbulence model�
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Figure �� View of wing trailing edge� baseline grid�

Figure �� View of wing trailing edge� capped
trailing
edge grid�
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Figure �� Close
up view of wing trailing edge� baseline grid�

Figure �� Close
up view of wing trailing edge� capped
trailing
edge grid�
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� RESULTS

Fig� � gives a summary plot of the computed lift curve compared to �ight test data from Clark
and Pelkman ���� The �ight test data was corrected to a tail
o� condition� The lift coe�cient
at which bu�et onset occurs in the �ight test �acceleration of �����g at center of gravity	 is
shown�

Overall� the CFD results as a whole track the �ight test data relatively well through bu�et
onset� However� there clearly are discrepancies� the lift is too high at the lower angles and too
low at the higher angles� Thus� the CFD is indicating a break in the lift curve slope somewhere
between � � ���� and ���� that is not exhibited in the �ight data� However� the reader should
be cautioned that many of the particulars of the �ight data�s genesis are not fully understood
�see also the discussion on this topic in Ref� ���	� Therefore� the comparison should be viewed in
a qualitative light only� Drag and moment coe�cients are plotted in Figs� 
 and ��� respectively�
No �ight data was available to compare with these quantities�

Figure �� Computed lift coe�cients compared with �ight test data �corrected to tail
o� condi

tion	�

The variations in the CFD results are summarized in Tables �� �� and �� for e�ects of
code� turbulence model� and cap grid� respectively� The lift and drag coe�cient di�erences at
the three angles of attack of � � ��
�� ����� and ���� are represented graphically in Fig� ���
In general� the higher the angle of attack� the larger the variation� The largest of the three
individual e�ects is the e�ect of turbulence model� The variation due to the cap grid is generally
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Figure 
� Computed drag coe�cients�

Figure ��� Computed moment coe�cients�






lower than that due to code�

This �gure can be compared to Fig� �� in Ref� ���� For that earlier con�guration� similar
trends were seen between variations due to code and turbulence model� for example� at bu�et
onset the variation in lift was about �� due to turbulence model and about �� due to code�
For the current con�guration at bu�et onset �� � ����	� the numbers are ���� and �����

Figure ��� Graphical summary of CFD variations�

The progression of upper surface streamline patterns for three successive angles of attack
of � � ��
�� ����� and ���� are shown �for results using the SA model in CFL�D	 in Figs� ���
��� and ��� respectively� At the lowest angle of attack� there is a small region of shock
induced
separation� This region grows as the angle of attack is increased� At the bu�et
onset angle of
� � ����� a signi�cant portion of the wing upper surface is separated�

Streamlines that demonstrate the e�ect of turbulence model on the wing upper surface
�ow�eld at � � ���� are shown in Figs� ��� �� and ��� These solutions are given by the SA�
SST� and EASM turbulence models� respectively� The SST model yields the lowest lift and
EASM the highest� giving a di�erence of ����� �The EASM yields the smallest of the three
separated regions� due to its further
aft shock location�	 The di�erence in separated
region sizes
between the turbulence models also has a very large impact on the computed pitching moment
������	�

The computed streamlines at � � ���� can be compared with the separation pattern from
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the �ight test� shown schematically in Fig� ��� As was also the case in Clark and Pelkman ����
CFD generally predicts the onset of separation �i�e�� the shock location	 further forward than
experiment� Among the three turbulence models used in this study� EASM predicts the furthest
aft shock location and thus gives the best qualitative agreement with the �ight test�

Wing upper surface pressure coe�cients are shown at nine span stations in Fig� ��� com

paring SA results using CFL�D and OVERFLOW� No �ight data was available for comparison�
Results are very close except at the span stations between �y�B � ��� and ��
 inclusive� where
CFL�D predicts the shock location to be further forward than OVERFLOW by as much as
�� chord� Also� the Cp levels tend to be lower in the separated region behind the shock for
CFL�D�

Taking the largest di�erences between any of the CFD runs at the bu�et onset condition
of � � ����� the combined approximate error band in CFD due to code� turbulence model� and
trailing edge treatment were� �� in lift� �� in drag� and ��� in moment� The variation in
moment is so large because it is the most sensitive of the three quantities to di�erences in surface
pressures� At bu�et onset in particular� the separated region on the wing is quite extensive for
this con�guration� and small di�erences in the region�s shape have a profound e�ect on the
integrated moment�

Figure ��� Wing upper surface streamlines� � � ��
�� CFL�D� SA�
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Figure ��� Wing upper surface streamlines� � � ����� CFL�D� SA�

Figure ��� Wing upper surface streamlines� � � ����� CFL�D� SA�
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Figure ��� Wing upper surface streamlines� � � ����� CFL�D� SST�

Figure ��� Wing upper surface streamlines� � � ����� CFL�D� EASM�
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Figure ��� Schematic representation of �ight test separation pattern on the wing upper surface�
from Clark and Pelkman ����
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Figure ��� E�ect of code on upper surface pressure coe�cients� � � ����� SA�
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� CONCLUDING REMARKS

As a follow
on to an earlier study of CFD variation over a civil transport aircraft near bu�et
onset� a di�erent aircraft con�guration was studied� An overset grid was employed� with point
distribution based on the lessons learned from the earlier study� The two codes OVERFLOW
and CFL�D were used� and the e�ects of code� turbulence model� and trailing edge cap grid
were studied� As in the earlier study� the turbulence model was found to have the largest e�ect�
with a variation of ���� in lift at the bu�et onset angle of attack� Drag and moment variation
were ��
� and ������ respectively� The variations due to code and trailing edge cap grid were
smaller than that due to turbulence model� Overall� the combined approximate error band in
CFD due to code� turbulence model� and trailing edge treatment at the bu�et onset angle of
attack were� �� in lift� �� in drag� and ��� in moment� These numbers can be compared to
those from the earlier bu�et onset study ��� in lift� �� in drag� and ��� in moment	� The
reason for the signi�cantly larger percentage variation in the moment is due to the fact that
the absolute moment values for the current con�guration are approximately half those of the
previous con�guration� The absolute variations in moment levels are about the same� The
current CFD results showed similar trends to �ight test data� even well beyond bu�et onset�
However� the CFD results also exhibited a lift curve break not seen in the data� The reason for
this di�erence is not known�
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Table �� Summary of computations performed at M � ����� ReMAC � �� million

Run Grid �� deg� Code Turbulence model

� baseline ��
 ��
 OVERFLOW SA
� baseline ��� ��� OVERFLOW SA
� baseline ��� ��� OVERFLOW SA
� baseline ��� ��� OVERFLOW SA
� baseline ��� ��� OVERFLOW SA
� baseline ��� ��� OVERFLOW SA
� capped ��
 ��
 OVERFLOW SA
� capped ��� ��� OVERFLOW SA

 capped ��� ��� OVERFLOW SA
�� capped ��� ��� OVERFLOW SA
�� baseline ��
 ��
 CFL�D SA
�� baseline ��� ��� CFL�D SA
�� baseline ��� ��� CFL�D SA
�� baseline ��
 ��
 CFL�D SST
�� baseline ��� ��� CFL�D SST
�� baseline ��� ��� CFL�D SST
�� baseline ��
 ��
 CFL�D EASM
�� baseline ��� ��� CFL�D EASM
�
 baseline ��� ��� CFL�D EASM
�� baseline ��� ��� CFL�D EASM

Table �� Variation due to code �using SA model and baseline grids	� in percent

�� deg �CL �CD �CM
��
 ��� ��� ���
��� ��� ��� ����
��� ��� ��� ����
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Table �� Variation due to turbulence model �using CFL�D and baseline grids	� in percent

�� deg �CL �CD �CM
��
 ��� ��
 ���
��� ��� ��� ���
��� ��� ��
 ����

Table �� Variation due to trailing edge cap grid �using OVERFLOW and SA model	� in percent

�� deg �CL �CD �CM
��
 ��� ��� ���
��� ��� ��� ��

��� ��
 ��� ��

��� ��� ��� ����
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